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Business and Activity Section 
 
(a) Contract Activity 
No contract modification was made or proposed in this quarterly period. No materials were purchased 
during this quarterly period.  
 
(b) Status Update of Past Quarter Activities 
In the past quarter, we continued making progress in Task 1, Task 2, and Task 3. In particular, we 
conducted environmental testing on specimens, and characterized the corrosion defect profile with optical 
microscopy measurement in Task 1. In Task 2, we investigated the detection capability on defects along 
circumferential direction, and also used an automated signal classification to determine defect 
characteristics (such as defect depth, length, and location). In Task 3, we modified and updated the database 
we collected, fine-tuned the ABAQUS model to generate additional cases with a single defect, and re-
evaluated the performance of the existing prediction models. 

 
(c) Cost share activity 
Partial support for one graduate student tuition and 0.57 months of Dr. Huang’s annual year salary was 
provided by The University of Akron as per the cost share agreement.  

 
(d) Task 1. Generate realistic corrosion and cracking defect profiles 
1. Objective of Task 1 
The objective of Task 1 is to utilize the experimental testing and numerical analysis to generate more 
realistic defect shapes and colony profiles, which will be used for characterization and validation of 
interactive defects using non-destructive evaluation (NDE). Meanwhile, the identified defect profile will 
be used for the probabilistic defect time-evolution model development, which is crucial for reliability 
evaluation of pipeline performance under interactive defects. 
 
 



2 

2. Research Progress in the 2nd Quarter 
UAkron and MSU had discussed and finalized the experimental procedures for corrosion exposure testing 
that involves the corrosion evaluation at UAkron and NDE study at MSU. The metal types and sample 
sizes were determined in this quarter through consulting with GTI. The metal for the exposure test is a 
ground low-carbon steel with a similar composition as the API series pipeline metals. The sample is flat 
sheet with the size of 3” × 3” × 3/32”. The samples were in the exposure of 5 wt.% NaCl fog in an 
environmental chamber following ASTM B117 salt spray testing. One graduate student at UAkron was 
working this task. 
  
The optical microscopy measurement was conducted on the metal surface. The preliminary testing result 
from optical microscopy is shown in Figure 1. In addition, the time evolution of corrosion profile was 
characterized by infinite focus microscopy as shown in Figure 2. It is expected to obtain the length, width, 
and depth of the corrosion defects. The exposure testing was conducting around 2 weeks. Due to the 
pandemic of COVID-19, UAkron has switched to on-line classes and non-essential research has stopped. 
Therefore, the exposure testing had to be stopped for now. 
 

 
Figure 1. Optical microscopy observations on the metal surface under salt fog exposure.  

 
 

 
Figure 2. Infinite microscopy characterizations on the metal surface under salt fog exposure.  

 
In the next quarter, UAkron will continue working on the corrosion exposure testing, electrochemical 
measurements, and surface characterizations once the campus is open. UAkron will also start on COMSOL 
simulation that includes COMSOL model setup and simulation parameters identification.  
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(e) Task 2. NDE framework development and validation for interactive defect detection and state 
characterization in both lab and field environments 

1. Background and Objectives in the 2nd Quarter 
1.1 Background 

Interactive defects detection and characterization in metallic pipes is one of the major challenges identified 
for pipeline integrity assessment. The group here previously has developed/is developing novel NDE and 
data processing methods for pipeline applications, including internal corrosion inspection using optical 
structured light 3D reconstruction and rendering techniques that significantly improves the damage 
detectability, and stress corrosion cracking (SCC) detection using multi-frequency electromagnetic 
techniques, remote field eddy current (RFEC) techniques, etc. assisted by machine learning (ML). While 
there are tremendous successes in these techniques, which work well for exposed pipes or “in-the-ditch 
NDE”, only Shear Horizontal (SH) guided wave testing has been proven to work in NDE of buried 
pipelines that poses a big challenge in field-testing to understand realistic interacting threats environment. 
In this task, the MSU NDE team will develop a multi-modal electromagnetic and ultrasonic framework 
including electromagnetic acoustic transducer (EMAT) for generation of SH waves (low frequency-50kHz 
to 500 kHz), localized Rayleigh wave measurement using EMATs and air coupled transducers, and contact 
ultrasonic measurement for validation of guided wave results for better characterizing the identified 
interactive anomalies, as well as leveraging other techniques being developed by the group through the 
other successful programs sponsored by PHMSA. Defect localization and material characterization have 
always been a challenge for guided waves inspection in this community; and it is worth noting since SH 
waves have very little out-of-plane leakage, their energy is confined within the pipe walls and they can 
propagate for long distances. Therefore, any local changes to thickness or material degradation (loss in 
stiffness and density) can be detected using SH waves, which makes it a perfect candidate for the proposed 
corrosion/SCC/fatigue defects interaction study. Expanding from the ongoing PHMSA project, 
introduction of SH waves modality and dedicated signal processing algorithms for analyzing the 
interactive-damage-feature-encoded data will be crucial for the success of the proposed work. 
 

1.2 Objectives in the 1st Quarter 
Across the past quarter, we looked at the effect of corrosion as axial defects (i.e., defects along the length 
of the pipes). But very often, pipelines are seen to have circumferential defects. In this quarter, we have 
investigated such defects along the circumference of the pipe. A similar study in terms of characterizing 
pit depths and number of pits is carried out with the help of circumferential guided waves. The other part 
of the work involved designing an automated signal classification algorithm that can detect NDE responses 
from healthy and faulty Pipelines. The final objective for this algorithm is to not only detect an NDE 
response accurately, but also predict defect characteristics like pit depth, length and location in the pipe. 

 
2. Research Progress in the 2nd Quarter 

2.1 Recap of the 1st Quarter Research 
In the past quarter, we primarily looked at present techniques for simulating guided waves in pipelines that 
include the plate wave equation to determine dispersion of guided waves. Meanwhile, modeling defect 
accurately was also considered crucial in the simulation studies, since the NDE responses based on the 
modeled defects will be used to optimize the sensor frequency. We used finite element modeling (FEM) 
to accurately model and mesh defect geometry to study the resulting ultrasonic NDE response. Using FEM 
helped in not only optimizing sensor parameters (e.g., frequency), but also in studying the physics behind 
the interaction of guided waves with complex interacting defects, and the generation and reception of 
guided waves in pipelines. 
 
Structural health monitoring (SHM) of pipelines using ultrasonic required a good understanding of defect 
signal vs. no-defect signal. While experiments can be carried out to understand this response, one should 
use a large set of data to effectively understand the differences. It would be rather efficient to rather develop 
an array of numerical models, which can simulate different materials and structural conditions to obtain 
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their corresponding ultrasonic response for the complex anomaly scenario. This can further be used to 
develop the NDE and SHM protocols. In the last quarter, we showed the successful propagation of 
Ultrasonic Guided Waves (UGW) in a pipeline using a 2-D FEM based model, and also modelled corrosion 
pits and look at its respective ultrasonic NDE response. The idea behind this was to come up with a model 
and find the optimum parameters like frequency, excitation etc., that can be then utilized directly in models 
with realistic defect profiles that is to be developed/generated by the research group at UAkron. It also 
gave us a clear idea between a defect and a no defect response that was desired before further extensive 
studies could be studied. We were also able to study the effect of pit depths, and number of pits. Some the 
results are shown and discussed below for a quick recap. 
 
We modelled a 2D asymmetrical model in COMSOL ® 5 Multiphysics software, where we modelled 
corrosion as hemispherical pits or cavities of certain depths and lengths. Figure 3 shows the burst excitation 
that is applied on the transducer boundary in our 2D asymmetrical model. The response for such corroded 
samples and clean samples were captured, and their simple difference gave rise to the pure defect signature 
arising from purely the corrosion pits. Also, since these pits/cracks normally exist in interactive colonies, 
the effect of number of pits has been studied. The material used was the normal Steel AISI 4340 usually 
found in many pipelines. 

 

 
 
 
 
 

 

 
Figure 4: (a) A-scan at (0,0) and (b) von misses stress at time t = 0.002s 

 
Figure 4 shows the velocity response of a pipe with an axial defect of 10mm in length and 1 mm in depth, 
while the Figure 4(b) shows the propagation of Von Misses stress inside the 3D pipe. Figure 5 below gives 
the comparison of NDE responses between a healthy signal and a defect signal. Clear difference in signals 
was observed for the pipe with a defect. Taking the difference between these two signals in Figure 5 gives 
the defect signature arising directly from the defect. We have neglected the mesh noise to simplify the 
analysis. Figure 6 shows the defect signature. 

The burst excitation is 
applied at this boundary 

Figure 3: Zoomed simulation model showing the excitation by the application 
of the burst type signal on transducer boundary. 
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Figure 5: Comparison of A-scans with baseline 

 

 
Figure 6: Defect Signature for pit with 1 mm depth 

 
The mechanics of corrosion and how it affects surfaces is a complex process. Hence, predicting the growth 
of pits requires an extensive field and experimental study. The relationship for pit depth and time for a 
metal is loosely given as [1], 

!"#$ = &'(/* 
where dpit is the pit depth, T the exposure time and k some constant based on the water and alloy 
composition. Figure 7 below shows the effect of pit depth on the defect signature. A clear increase in the 
amplitude of the defect signature was seen. This was expected, because as the pit depth increases, the 
reflections from the pits are much stronger, and since we used a pulse echo setup, the reflections are much 
stronger. A similar argument can be made if the number of pits increase, and this is clearly reflected in the 
defect signatures seen in Figure 8. 
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Figure 7: Defect signatures for pits with 3mm and 5 mm depths 
 

 

 
Figure 8: Defect signatures for single and double pit models. 

 
 

2.2 Circumferential Guided Waves 
Circumferential guided waves have an advantage of limited area to be covered depending on the 
circumference. Thereby, dispersiveness of the waves do not hold any limitation for the interrogation giving 
the operator freedom to choose any frequency. Circumferential guided waves are lamb waves that are 
launched using specific arrangement of transducers like the axially arranged phased array elements [2]. 
Such waves are different than the one-dimensional waves in tubes [3]. Commercial hand held scanners [4] 
are available that utilize such linear array to scan the pipe length with its axial movement. We consider 
such a transducer as a point source in the study to study the circumferential guided wave interaction with 
corrosion. Consider a case of wave propagation along the circumferential direction at a frequency of 50 
kHz in a 6 mm thick steel pipe with a diameter of 200 mm. The geometry and defect types are shown in 
Figure 9. The location of a piezoelectric wafer type transducer at 0° along the circumference and defect 
location is shown in Figure 9(a). Figure 9(b) shows the pit formed by the Boolean subtraction of three 
circles from the surface of the pipe. Figure 9(c) shows three pits with a central spacing of 6 mm. Figure 
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9(d) shows a simulated interactive defect formed by combination of corrosion pit and a crack. Colony of 
3 pits with the location of crack in the central pit has been considered. The length of the crack is 2 mm 
deep. Detection of single and two pit colony has also been considered which has not been shown in the 
figure. The crack length in Figure 9(d) is changed to 1 and 3 mm to simulate the effect of crack depth on 
guided wave propagation. 

 

 
(a)        (b) 

 
(c)       (d) 

Figure 9: Corrosion type defects located circumferentially around the pipe. (a) Zoomed image showing 
dimensions of a single pit (c) colony of three pits and (d) interacting defects consisting a colony of three 

pits with 2 mm deep crack in the central pit. 
 

Results and Discussion 
Excitation applied across the wafer type transducer produces S0 and A0 guided waves in the pipe that 
propagate around the circumference as shown in Figure 10. The pipe being defect free has a wave 
propagating in both directions from the wafer exciter. With a higher velocity the S0 wave propagates 
towards another end leaving behind the slower moving A0 wave mode. The top and bottom section of the 
pipe has similar wave propagation pattern due to symmetric geometry and transducer arrangement. The 
von Mises distribution is captured at 0.14 ms, which is enough to see the separation of the S0 and A0 wave 
modes. The wave modes would travel all the way around the circumference and reach the exciter when 
there are no defects or other structural features obstructing them. The signal received by the same wafer 
exciter in case of a healthy pipe is shown in Figure 11. The first packet is the incident packet appearing 
when the wave is launched by the exciter itself. Following packets are the S0 and A0 wave modes 
respectively returning to the exciter after propagating through the circumference. The signals obtained in 
the presence of corrosion pits have been superimposed. Clearly the signals vary due to the reflections of 
S0 wave mode from the corrosion. The reflected packet from the A0 wave mode is mixed with the returned 
S0 and A0 wave response and requires further processing to obtain it. The single pit produces enough 
change in the signal to be detected in the presence of a real environment with ambient noise. The reflected 
wave packet amplitude changes with its spread as the pits increase. This serves as a good indicator of 
damage severity which can be estimated by a cumulative damage index [5]. 
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Figure 10: Circumferential guided wave around the pipe seen from the von Mises stress profile across the 
cross section. 

 
Figure 11: Axial displacement response at the piezoelectric wafer transducer location with healthy, one 

pit, two pit colony and three pit colony conditions. 
 

Assuming that the three-pit colony is enough to introduce stress corrosion cracking, a crack is introduced 
at the middle pit with depth of 1 mm. The crack depth is further increased in steps of 1 mm to obtain 
another two cases of severity. Such interactive damage produces signals shown in Figure 12. The reflected 
S0 wave mode packet significantly increases in amplitude. The reason is attributed to the reduced cross 
section causing proportionate reflection of S0 wave energy. The change in amplitude and waveform with 
frequency content can be further studied for damage classification including interactive features. This 
aspect is proposed to be done in the next quarter. 
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Figure 12: Axial displacement response at the piezoelectric wafer transducer location with three pit 

colony, interactive 3 pit colony with 1 mm crack, interactive 3 pit colony with 2 mm crack and interactive 
3 pit colony with 3 mm crack conditions. 

 
2.3 Automated Signal Classification 

Simultaneously, the next step was to automate this process of feature selection, and have a classification 
algorithm that can effectively predict the defect characteristics given a waveform. The advent of Machine 
Learning in signal processing, and especially in Nondestructive Evaluation has greatly helped this purpose. 
Neural Networks in brief are known as universal function approximators [6]. But, for a complicated 
mapping, an exponential number of hidden units are required but such a large neural network may fail to 
train. Telgarsky [7] has investigated the importance of depth in neural networks. Deep neural networks 
encode a general belief that every function can be represented in terms of simpler functions and their 
combination can approximate the existing function. The underlying features can be extracted from the 
signal which has reduced a hectic and a time-taking feature engineering process [8]. Each deep learning 
algorithm has its own pros and cons for wave response as features and is investigated by Rautela and 
Gopalakrishnan [11]. Hence, choosing the right framework, architecture and the hyper parameters is a 
challenging task in itself. Deep learning techniques work by feed-forward propagation of input information 
to hidden layers to get some output. This output is not necessarily a true output (in a supervised learning 
setting). A back-propagation algorithm flows information backward (which is generally a loss value 
described by a cost function) while using a gradient descent-based optimization algorithm. During the 
procedure of continuous forward and backward passes, the learning parameters (weights, W and biases, b) 
are tuned to a value that minimizes the cost function [9].  

 
Current literature is bent towards abovementioned optimization schemes but here, we have focused on 
using the Adam optimization. Adam is an adaptive learning rate optimization algorithm that’s been 
designed specifically to train deep neural networks. Adam is a combination of RMSprop and Stochastic 
Gradient Descent (SGD) with momentum. It utilizes the squared gradients to adaptively scale the learning 
rate like RMSprop as well as the moving average of the gradient (instead of the gradient itself) like SGD 
with momentum [10]. A neural network-based learning algorithm maps feature space to target space by 
minimizing the loss function using a optimization scheme (Adam optimizer here) over a virtual surface 
created by the dataset in n-dimensional vector space. A typical loss function is the mean-squared loss 
function (MSE). The formulation is presented in equation below. 

+(-, ℎ) = 1
2 3 4(5, ŷ)

7

78(
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A very important aspect while building such automated classification schemes is to collect a good 
‘distinguishable’ dataset. By ‘distinguishable’, the dataset should contain signals that have features which 
vary for different conditions. Any neural network at the end of the day, is a function approximator, and if 
there is no function to approximate i.e. when similar data is present, the networks fail. An important 
precursor to build accurate classification algorithms is to check the data for different features, and clean it 
if necessary. The features can range from simple features like temporal energy, peak amplitude, and time 
of flights to relatively more complicated features derived from Wavelet Transforms, Fourier Transforms 
and more.  
 

Dataset Analysis 
For this work, we have used only models used in the last quarter, i.e. the axial defects models. We collected 
about 150 samples, which each collected individually were using the COMSOL models from the past 
quarter. The split up of the 150 samples is as shown below in Figure 13. Data collecting was a time 
consuming process as each simulation took about 10 minutes, and 150 simulations adds up to about 25 
hours of simulations. Hence our dataset is limited when it comes to the actual size. The simulation 
parameters are the same as reported in the Quarter 1 report. The faulty signals were collected for range of 
pit depths and lengths. Also, responses with different number of pits were collected. 
 

 
 

Figure 13: Split of the 150 samples collected for Classification 
 
At first, we look at the simple statistical nature of the data. Simple features like the mean and variance of 
a vector is computed for all the 150 samples. Figure 14 shows the same. It is clearly seen that there is clear 
difference in statistics of the NDE responses of the healthy and defect signals. 
 

 
Figure 14: (a) Mean of each sample for the classification dataset and (b) variance of each sample in the 

dataset (150 samples) 
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Any NDE response is a time dependent data and also multiple frequencies at different times. Hence it is 
always important to analyze the temporal and spectral characteristics of such datasets. A simple way would 
be to look at the spectral and temporal energies of each signal. The formulation for temporal energy is 
given below. 
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While the spectral energy formulation is as given below, 
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where Xk(f) is the Fourier transform of xk(t) and is defined as, 
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Figure 15 shows the temporal and spectral energy spread for each of the sample. Once again, considerable 
difference is seen for healthy and defect responses. Kindly note that all 57 responses of a healthy sample 
is expected to and has similar characteristics, both temporally and spectrally. 

 
Figure 15: (a) Spectral Energy spread for the classification dataset and (b) Temporal Energy Spread in the 

dataset (150 samples) 
 
The above analysis has given us a clear picture of the different features that can be potentially used in the 
classification algorithm. The classification algorithm can be designed in two main ways. One method 
would be to feed in the raw A-scan itself, while the other would be to feed in the features as separate inputs 
post processing. The inputs can include the one’s discussed above, or go beyond in terms of Wavelet 
coefficients, Wigner distributions. Feeding in only the features reduces the dimensionality of the problem, 
and henceforth makes sit computationally more efficient, while at the same time there is a risk if the 
features chosen don’t really most accurately define the characteristics of a healthy or defect sample. This 
problem is avoided while feeding in the raw A-scan, but it makes it computationally more laborious. In 
our study, we have fed in the whole A-scan itself as the input, as it is not very clear from the study which 
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feature influences the outcome most, and without that information, it would be very hard to choose the 
right set of features to train our network. 
 

Results and Discussion 
The first step is to be able to design a network, to simply classify healthy and defect signals in separate 
classes accurately. We have used a simple Multi-Layer Perceptron Network, whose architecture is 
described below in Figure 16. The network is trained on 145 samples of the dataset, and is tested 5 
randomly chosen samples from the dataset. It consists of 4 dense fully connected layers, with dropout 
layers to avoid overfitting. By using dropout layers, we ensure the network works well not only to seen 
data, but also to unseen data. The network predicts a final value to be close to 0 or 1. It is considered a 
defect if it’s close to 1, and healthy if it is close to 0. 

 
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
dense_105 (Dense)            (None, 1039)              1080560    
_________________________________________________________________ 
batch_normalization_81 (Batc (None, 1039)              4156       
_________________________________________________________________ 
dense_106 (Dense)            (None, 512)               532480     
_________________________________________________________________ 
batch_normalization_82 (Batc (None, 512)               2048       
_________________________________________________________________ 
dropout_53 (Dropout)         (None, 512)               0          
_________________________________________________________________ 
dense_107 (Dense)            (None, 128)               65664      
_________________________________________________________________ 
batch_normalization_83 (Batc (None, 128)               512        
_________________________________________________________________ 
dropout_54 (Dropout)         (None, 128)               0          
_________________________________________________________________ 
dense_108 (Dense)            (None, 1)                 129        
================================================================= 
Total params: 1,685,549 
Trainable params: 1,682,191 
Non-trainable params: 3,358 
_______________________ 

Figure 16: Architecture of the Multi-Layer Perceptron Network used.  
 
The loss function used is the MSE function as described previously, while we have used an Adam 
optimizer. The activation function is Relu. Relu is typically used in neural networks to introduce 
nonlinearity in terms of the interaction of the inputs which is highly desired in practical problems. It is 
computed over 100 epochs, with a learning rate of 0.00001. Tuning the hyper parameters is a big aspect of 
building successful networks, and while there is no such right or wrong techniques to do so, it generally 
depends on the dataset and the architecture. We evaluate the performance of the network by the Mean 
Absolute Error (MAE) and the accuracy metric. One of the main takeaways during this was the significance 
of batch size while training. The batch size greatly influenced the performance of the network. The batch 
size is a hyper-parameter of gradient descent that controls the number of training samples to work through 
before the model's internal parameters are updated. Since our datasets was small, the chances the networks 
learn the same type of samples is a possibility. This will lead to over generalization of the problem, and 
the network won’t predict well on unseen samples. Hence with a batch size of four, we were able to achieve 
very good performance as described below. The training loss curve and the training MAE plot are shown 
in Figures 17 and 18, respectively.  

 



13 

 
Figure 17: Training Loss for the MLP Network  

 

 
Figure 18: Training MAE for the MLP Network  

 
The loss function converged pretty well during the training, while mean absolute error also converged 
well. The performance is obviously limited by the fact that our dataset is very small, and it is boosted by 
the depth of our network. We then used the network to predict the nature of the response on unseen 
examples, and it predicts with almost 96% accuracy. The accuracy across the training procedure is shown 
in Figure 19. The jaggered nature of the plots in the previous figures (loss, MAE and accuracy) might be 
probably due to the size of the small dataset. Neural Networks generally need a lot of data to learn and 
predict very well on seen and unseen examples, and in fields like NDE and SHM, generating or collecting 
big datasets is a challenge. 
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Figure 19: Training Accuracy for the MLP Network  

 
The prediction results for the 5 samples are shown in Figure 20. The network correctly predicts four of the 
five samples to have defects in them, while it predicts correctly the only healthy sample. Please note that 
predicting a value close to 0 indicates a healthy sample, while something close to 1 indicates a faulty pipe. 

 

 
 

Figure 20: Prediction Results for the MLP Network 
 

2.4 Conclusions 
This quarter, we have been able to simulate circumferential ultrasonic guided waves inside a pipe with and 
without defects in order to optimize the necessary parameters. The interaction of circumferential guided 
waves in pipes with pits caused due to pitting corrosion has been captured. A comparison of signals with 
clear defect and a no-defect signal show capability to extract damage feature. The change in defect 
signatures with respect to pitting depth and number of pits is studied.  Also, we were able to come up with 
an effective classification scheme to classify healthy and defect NDE responses with accuracy. Given any 
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A-scan, the network can easily predict the health of the pipe. This opens up the prospect of using sensory 
data (either A-scans or images) to characterize corrosion pits completely. The next question is to develop 
an algorithm that can predict the characteristics of the defect in terms of its effective area, depth and 
location. For this, a much larger dataset needs to be collected and more rigorous signal processing schemes 
in terms of using Wavelet transforms among others 

 
2.5 Future Work 

The results obtained by simulating circumferential guided waves hold possibility of determining the 
damage parameters using a large dataset generated for different pit depths, pit lengths and number of pits, 
and for different transducer parameters like operation frequency and feature extraction techniques. The 
simulation results provide results to design a circumferential transducer for experimental validation of 
these results which will be undertaken in the next quarter. In terms of the furthering a complete 
classification algorithm, the next step would be developed or improve the existing algorithm to predict 
defect characteristics like pit depths, length and location. Convolutional Neural Networks seem to work 
well with time dependent data and regression-based problems. The work is already in progress and almost 
at completion, and will be presented in the next quarter. The final classification scheme can characterize 
both axial and circumferential corrosion in terms of the depth, length, area, location and the number of 
pits. Looking at the bigger picture, other NDE methods like Electromagnetic NDE, Electromagnetic 
Acoustic Transducers are to be developed to not only characterize corrosion, but any pipeline related 
defects in general, and have a model that fuses data from different NDE modalities to predict most types 
of defects in a pipeline and characterize the defect in terms of its most basic characteristics. 
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(f) Task 3. Probabilistic capacity model development considering interactive anomalies 
1. Background and Objectives in the 1st Quarter 

1.1 Background 
The inaccurate prediction of failure pressure capacity is one of the critical issues in risk management of 
pipeline systems, as it can impede the ability to achieve a target margin of safety. The burst failure 
mechanisms for corrosion and cracking defects are fundamentally different, and even more complex for 
interactive anomalies. With corrosion, the burst failure is a ductile failure due to plastic collapse; with 
cracking defect, the failure includes ductile failure (similar to corrosion) and brittle failure due to fracture. 
For a colony of closely spaced defects, the residual strength of a pipeline becomes much lower than an 
isolated defect due to the interaction among the adjacent defects.  
 
The limitations of existing work regarding the failure pressure predictions include the following: (1) 

numerous models are available, but no model is universally accepted; (2) the majority of the models 
were developed based on the concept of a factor of safety, thus, these models are deterministic and 
cannot be directly used in reliability analysis; and (3) numerous studies have shown that these 
models provide over-conservative predictions for both corrosion and cracking-like defects, and the 
bias needs to be quantified and corrected. This Task 3 is aimed to address the limitations mentioned 
above, and it includes two subtasks: 

• Task 3a. Establishment of a failure pressure database  
• Task 3b. Probabilistic failure pressure model development 

 
1.2 Objectives in the 2nd Quarter 

The overall objective for Task 3a is to establish a database for three groups: isolated and colony of 
corrosion defects, isolated and colony of crack-like defects, and colony of corrosion and crack-like defects. 
The overall objective for Task 3b is to develop probabilistic failure pressure models for a pipeline with 
corrosion anomalies, crack-type anomalies, and interactive anomalies with different types. 
 
In the 1st Quarter, a MS student has worked on establishing a database for isolated corrosion defects 
(including collecting data from literature and generate new data based on finite element models, FEMs), 
and reviewing the existing prediction models. In the 2nd Quarter, a Ph.D. student from Dr. Huang’s research 
group, Kiswendsida Jules Kere, was assigned to continue the project to the completion of the project. 

 
The Ph.D. student has checked on the work done by the previous student and found that there are a few 
things that need to be modified and updated. Therefore, the objectives for Task 3 in the 2nd quarter are to 
modify the database and fine tune the FEM, and to re-evaluate the performance of the existing prediction 
models based on the updated database. 
 
2. Research Progress in the 1st Quarter 

2.1 Data Collection 
The database is for failure pressure of pipelines with isolated corrosion defects, and consists of data 
collected from literature review and FE analysis conducted in this project. The database collected in the 1st 
quarter was revised due to repetitive data reported from different literature and other errors found. The 
total number of burst test results is reduced from 525 to 433. The revised database consists of 83 laboratory 
experimental burst test results and 350 FEM simulations results.  

Furthermore, the additional numerical data were revised based on the modified FEMs, which use 
ABAQUS Statics-General procedure analysis with Von-Mises criteria as failure criteria. The FEM was 
then validated using only the experiment test results from the collected database. Table 1 shows the results 
of the FEM validation. 
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Table 1. Selected cases for FEM simulation and their results 

 † The defect width is assumed to be 0.05pD based on an assumption from [20] 

 

Reference Type Grade Pipe L 
(mm) 

Pipe D 
(mm) 

Pipe t 
(mm) 

σy 
(MPa) 

σu 
(MPa) d (mm) l (mm) w (mm) Pb (MPa) FEM 

(MPa) Error (%) 

[12] EXP AISI1020 Mild 420 42 2.73 264 392 1.58 42.00 13.00 37.02 36.66 0.0097 
[12] EXP AISI1020 Mild 420 42 2.73 264 392 2.24 21.00 13.00 34.55 33.42 0.0328 

[13] EXP X42 2740 274 4.93 351 454 1.60 45.72 43.02† 14.99 16.24 -0.0833 

[13] EXP X42 2730 274 4.57 351 454 2.74 66.04 43.11† 12.67 13.03 -0.0286 
[13] EXP X46 3230 323 8.64 356 469 2.16 63.50 50.79† 24.37 26.71 -0.0959 
[13] EXP X46 8640 864 9.47 400 508 3.00 185.42 135.65† 10.56 11.18 -0.0589 
[13] EXP X52 2730 273 5.26 389 502 1.73 139.70 42.89† 18.06 17.76 0.0167 
[13] EXP X52 6120 612 6.40 433 535 2.57 1371.60 96.05† 9.81 8.20 0.1644 
[13] EXP X55 5080 508 5.64 462 587 2.46 170.18 79.8† 11.51 11.59 -0.0075 
[13] EXP X55 5070 507 5.74 462 587 3.02 132.08 79.60† 10.73 11.63 -0.0844 
[14] EXP X60 3240 324 9.74 452 542 7.14 528 95.3 11.3 10.71 0.0520 
[14] EXP X60 5080 508 14.8 414 600 9.7 500 95.3 15.8 16.24 -0.0277 
[15] EXP X65 7620 762 17.5 465 564 8.75 300 50 19.8 20.08 -0.0143 
[15] EXP X65 7620 762 17.5 465 564 8.75 100 50 24.3 25.85 -0.0638 
[16] EXP X70 7620 762 15.9 532 627 7.95 300 50 21.5 20.62 0.0408 
[17] EXP X80 4590 459 8.1 534 661 5.39 39.6 31.9 22.68 22.25 0.0192 
[18] EXP X80 4590 459 8.00 589 731 3.75 40.00 32 24.20 25.85 -0.0682 

[19] EXP X100 13210 1321 22.81 782 803 11.31 608.05 207.47† 18.10 18.64 -0.0299 

[19] EXP X100 13210 1321 22.81 782 803 11.41 1108.13 207.47† 15.40 16.9292 -0.0993 
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As shown in Table 1, the selected cases cover a wide range of grade, from AISI1020 Mild (low yield 
strength) to X100 (high yield strength). The error percentages between the failure pressures reported in the 
literature and the failure pressures obtained from the FE models are all within 10% except one case where 
the error is about 16% which is acceptable. The results show that the FE models can be further used to 
predict failure pressure for other defect scenarios. 

2.2 Review of existing prediction models 
The grouping of the existing models given in the 1st quarter report was modified, as it is more appropriate 
to group those models based on the origins of the models. Table 2 provides a summary of the new grouping.  

Table 2. Grouping and comparison of existing pressure failure prediction models 

Group Model Performance comparison 
within the group 

G1: Models based on 
NG-18 

G1-1: ASME B31G Original 

G1-7 has the best 
performance and is suitable 

for all the levels of the 
selected quantities. 

G1-2: Modified B31G 
G1-3: SHELL92 
G1-4: RPA 
G1-5: RSTRENG Effective Area 
G1-6: CSA Z662 2007 
G1-7: DNV RP-F101 
G1-8: Fitnet FFS 
G1-9: Phan et al Modified NG-18 

G2: Models based on 
Buckingham’s π 

theorem 

G2-10: Netto et al. - 2005 
G2-11 overestimates the burst 

pressure and has the worst 
performance.  G2-12 and G2-
14 are suitable for Level 2 of 

the selected quantities. 

G2-11: Mustaffa & van Gelder 
G2-12: Netto et al. - 2010 
G2-13: Wang & Zarghamee 
G2-14: Phan et al Modified - Netto et al 

G3: PCORRC models 
G3-15: PCORRC G3-15 has the best 

performance. G3-16: Modified PCORRC 

G4: RAM PIPE Requal 
models 

G4-17: Original Ram Pipe Requal G4-17 overestimates the burst 
pressure and has the worst 

performance. G4-18: Modified Ram Pipe Requal 

G5: Models using 
strain-hardening 

G5-19: Zhu & Leis Both are suitable for all levels 
of the selected quantities, but 

G5-19 perform the best. G5-20: Zhu - X65 

G6: Other approaches 

G6-21: Choi et al. All are suitable for Level 2 of 
the selected quantities, but 
overall G6-22 perform the 

best. 

G6-22: Chen et al. 
G6-23: CUP 
G6-24: Phan et al. - Modified Gajdoš et al. 

 

2.3 Results and Discussions 
Database analysis 

As discussed in the 1st quarterly report, the failure pressure depends on many quantities, such as pipeline 
material properties and geometry, and defect geometry. Six important quantities: yield strength (sy), ratio 
of pipe thickness to pipe diameter (t/D), ratio of defect depth to pipe thickness (d/t), ratio of defect length 
squared to the multiplication of pipe diameter and thickness (l2/Dt), ratio of defect width to defect length 
(w/l), and ratio of defect width to pipe diameter (w/D), were selected to analyze the database. Due to the 
revision of the database, the overall range for these six quantities are updated, as shown in Table 3. 
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Table 3. Data range of six important quantities at different levels 

Quantity Overall Range 
Level 1 Level 2 Level 3 
Range Range Range 

sy (MPa) [262  802] [262   445] (445   508] (508   802] 
t/D [0.0041   0.0652] [0.0041   0.0157] (0.0157   0.0207] (0.0207   0.0652] 
d/t  [0.0993   0.875] [0.0993   0.375] (0.375   0.550] (0.550   0.875] 

l2/tD [0.0183   967.9665] [0.0183   18] (18   50] (50   8967.9665] 

LN (l2/tD) [-4.0002   9.1014] [-4.0002   2.8904] (2.8904   3.9120] (3.9120   9.1014] 

w/l [0.0190   10.9161] - - - 
w/D [0.05   0.48] - - - 

 
The spread of these six quantities over the updated database is shown in Figure 21. Figure 21(a) displays 
the scatter plot of sy over Pb (measured failure pressure) and as expected the result indicates that in general 
higher yield strength leads to higher burst pressure, except a few cases circled by the dotted lines. It turns 
out these cases are the ones with high thickness to diameter ratio, t/D, circled by the dotted lines in Figure 
21(b) which shows the scatter plot of t/D over Pb. Figure 21(b) also indicates a positive correlation between 
t/D and Pb. 

 
Figure 21(c) and Figure 21(d) show the scatter plots of d/t over Pb and log(l2/Dt) over Pb, respectively. As 
expected, a negative correlation is observed between the relation d/t and Pb as well as for log(l2/Dt) and Pb 
indicating that the depth and the length of the defect have significant effects on the failure pressure.  
However, Figures 21(e) and (f) indicate that the impact of defect width may be insignificant on the burst 
pressure. 

Additional Numerical Cases 
Using the validated FEM, additional numerical cases are generated and those cases are created to 
supplement the existing data collected from literature. Figure 22 compares the new FEM cases and the 
cases collected from literature in terms of the four importance of quantities (sy, t/D, d/t, and log(l2/Dt)). 
Table 4 summarizes the pipeline property, defect geometries, and obtained failure pressure for those new 
cases based on the developed FEMs.  
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(a) sy 

 

 
(b) t/D  

  
(c) d/t 

  
(d) log(l2/Dt) 

  
(e) w/l 

  
(f) w/D  

 
○ Experimental burst tests 

 
× FE burst tests 

 
Figure 21: Scatter plots of burst pressure (Pb) vs. selected quantities 
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(a) 

 
(b) 

 
(c) 

              ○ Experimental burst tests from literature 
              × FE burst tests from literature 
              * New FEM cases 

Figure 22: Scatter plots of selected quantities vs. yield stress (sy) 
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Table 4. New cases for FEM simulation 

Grade Diameter 
D (mm) 

Thickness 
t (mm) σy (MPa) σu (MPa) d (mm) l (mm) w (mm) Obtained 

Pb (MPa) 

AISI 1020 Mild 508 6.6 264 392 0.66 7.84 79.80 10.60 
AISI 1020 Mild 274 5 264 392 1.00 8.26 43.04 14.94 
AISI 1020 Mild 762 17.5 264 392 5.25 42.48 119.69 18.64 
AISI 1020 Mild 324 8.64 264 392 3.45 390.86 50.89 15.84 
AISI 1020 Mild 324 10.3 264 392 6.70 1160.31 50.89 10.67 

X52 324 5.08 389 502 0.51 9.05 50.89 17.13 
X52 762 17.5 389 502 3.50 70.04 119.69 24.97 
X52 508 14.8 389 502 8.14 640.70 79.80 17.42 
X60 459 8 414 600 0.80 8.20 72.10 22.88 
X60 762 17.5 414 600 3.50 42.48 119.69 29.36 
X60 324 10.3 414 600 6.18 57.77 50.89 34.50 
X60 459 8 452 542 0.80 8.20 72.10 21.25 
X60 762 15.9 452 542 4.77 40.49 119.69 24.23 
X55 508 6.6 462 587 0.99 12.92 79.80 16.74 
X55 324 8.64 462 587 3.02 32.08 50.89 32.34 
X80 508 5.74 534 661 0.57 7.31 79.80 16.43 
X80 324 5.08 534 661 0.76 9.05 50.89 22.81 
X80 762 17.5 534 661 7.88 42.48 119.69 32.34 
X80 324 8.64 534 661 4.75 644.01 50.89 19.19 
X80 324 10.3 534 661 8.24 1160.31 50.89 10.19 
X80 508 5.74 589 731 0.57 7.31 79.80 18.15 
X80 324 5.08 589 731 1.02 14.92 50.89 24.96 
X80 273 5.26 589 731 1.58 37.89 42.88 29.09 
X80 762 17.5 589 731 7.00 313.90 119.69 28.01 
X80 324 8.64 589 731 5.18 390.61 50.89 19.74 
X80 324 10.3 589 731 8.24 1160.31 50.89 11.24 
X100 508 5.74 782 803 0.57 7.31 79.80 20.51 
X100 324 5.08 782 803 1.02 14.92 50.89 28.71 
X100 273 5.26 782 803 1.58 22.98 42.88 34.57 
X100 762 17.5 782 803 7.00 115.48 119.69 38.22 
X100 324 8.64 782 803 5.18 644.01 50.89 20.61 
X100 324 10.3 782 803 8.24 1160.31 50.89 12.34 

 

Performance Comparison of Existing Models 
Due to the revision of the database, the performance of the existing models is re-evaluated. The 
performance of a prediction model can be quantified using mean (µres) and standard deviation (sres) of 
residuals (i.e., difference between the prediction and actual values) and mean squared error (MSE). In 
particular, MSE measures the combination of the bias and variance. Figures 23-26 shows the performance 
comparisons of the 24 existing prediction models at the three levels of the four quantities (i.e., sy, t/D, d/t, 
and l2/Dt), respectively, where the crosses refer to µres, the horizontal lines refer to µres ± sres, and solid 
dots are the MSE values.  
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As shown in Figures 23-26, regardless the quantities or levels, most model predictions averagely 
overestimate the burst capacity, resulting in positive µres, shown as cross markers above the horizontal line 
of zero residual. Some have negative bias for one level but positive bias for a different level. For example, 
models G1-7 and G5-19 have positive bias for t/D, Levels 1 and 3 (shown in Figures 24(a) and (c)) but 
negative bias for t/D Level 2 (shown in Figure 24(b)). For the same quantity with different levels, the 
prediction variance is bigger for σy Level-3, t/D Level-1, d/t Level 1, and l2/Dt Level 1 in general. These 
results show that the performance of each model changes from level to level. Note that models G2-11 and 
G4-17 overestimate the burst capacity regardless the quantities or levels.  
 
In terms of MSE values, most of models perform better for Level 2 of σy (i.e., moderate yield strength), as 
shown in Figure 23(d). Figure 4(d) shows that most models have worse performance for Level 1 of t/D 
(i.e., thin pipe thickness). According to Figure 25(d), the models perform similarly in all levels of d/t except 
models G2-11, G4-17, and G4-18. Figure 26 (d) shows that most of models perform better for Level 2 and 
Level 3 of log(l2/Dt). Table 2 also summarizes the performance comparison of these existing models within 
their own groups. 
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(a) σy– Level 1 

 

 
(b) σy– Level 2 

 

 
(c) σy– Level 3 

 

 
(d) σy - MSE – All Levels 

� Level 1 ▫ Level 2 o Level 3 
 

Figure 23: Comparison of residual and MSE of each model for three levels of σy 
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(a)  t/D – Level 1 

 

 
(b)  t/D – Level 2 

 

 
(c)  t/D – Level 2 

 

 
(d)  t/D – MSE – All Levels 

� Level 1 ▫ Level 2 o Level 3 
 

Figure 24: Comparison of residual and MSE of each model for three levels of t/D 
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(a) d/t – Level 1 

 

 
(b) d/t – Level 2 

 
 

(c) d/t – Level 3 
 

 
(d) d/t – MSE – All Levels 

� Level 1 ▫ Level 2 o Level 3 
 

Figure 25: Comparison of residual and MSE of each model for three levels of d/t 
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(a) l2/Dt – Level 1 

 

 
(b) l2/Dt – Level 2 

 

 
(c) l2/Dt –Level 3 

 

 
(d) l2/Dt – MSE – All Levels 

� Level 1 ▫ Level 2 o Level 3 

 
Figure 26: Comparison of residual and MSE of each model for three levels of l2/Dt 
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2.4 Future work (next Quarter) 
In the next Quarter, the research team will continue working on Task 3. In Task 3a, the colony defect 
database will be established based on literature review, similar to the database of isolated defect. The FE 
model will be extended from isolated corrosion defect to colony corrosion defect. In Task 3b, the research 
team will develop probabilistic burst pressure models for a pipeline with isolated defects based on different 
levels of yield strength, and possibly to develop the models on different levels of other quantities (such as 
t/D, d/t, and l2/Dt). Then the developed models will be compared with the existing models in terms of 
prediction accuracy using the established database. The impact of the model accuracy on the reliability of 
pipeline will be also studied.  
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